

Published on Web 05/25/2009

Preparation and Use of Ta(CD₂Bu^t)₅ To Probe the Formation of (Bu^tCD₂)₃Ta=CDBu^t. Kinetic and Mechanistic Studies of the Conversion of Pentaneopentyltantalum to the Archetypical Alkylidene Complex

Julia K. C. Abbott, Liting Li, and Zi-Ling Xue*

Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600

Received February 17, 2009; E-mail: xue@utk.edu

Abstract: Pentaneopentyltantalum, Ta(CH₂Buⁱ)₅ (1), was directly observed earlier in the formation of the archetypical alkylidene complex (BuⁱCH₂)₃Ta=CHBuⁱ (2) from the reaction of either (BuⁱCH₂)₃TaCl₂ (3) with 2 equiv of BuⁱCH₂Li or (BuⁱCH₂)₄TaCl (4) with 1 equiv of BuⁱCH₂Li. Ta(CH₂Buⁱ)₅ (1) was, however, short-lived, and its ¹H NMR resonances were mixed with those of (BuⁱCH₂)₃Ta=CHBuⁱ (2), BuⁱCH₂Li, (BuⁱCH₂)₃TaCl₂ (3), (BuⁱCH₂)₄TaCl (4), and CMe₄ in a fairly narrow region. In the current work, deuterium-labeled Ta(CD₂Buⁱ)₅ (1-*d*₁₀) has been prepared from the reactions of (BuⁱCD₂)₃TaCl₂ (3-*d*₆) with 2 equiv of BuⁱCD₂Li as well as (BuⁱCD₂)₄TaCl (4-*d*₈) with 1 equiv of BuⁱCD₂Li. Due to a kinetic isotope effect, Ta(CD₂Buⁱ)₅ (1-*d*₁₀) has a much longer life than 1. In addition, there are fewer peaks in the ¹H NMR spectra of Ta(CD₂Buⁱ)₅ (1-*d*₁₀). ²H NMR spectroscopy can also be used to characterize 1-*d*₁₀. These properties provide an opportunity to identify and study 1-*d*₁₀ in detail. Kinetic studies of the Ta(CD₂Buⁱ)₅ (1-*d*₁₀) → (BuⁱCD₂)₃Ta=CDBuⁱ (2-*d*₇) and Ta(CH₂Buⁱ)₅ (1) → (BuⁱCH₂)₃Ta=CHBuⁱ (2) conversions yield a kinetic isotope effect (KIE) = 14.1(0.8) at 273 K. In addition, kinetic studies of the 1-*d*₁₀ → 2-*d*₇ conversion at 273–298 K give Δ*H*[#]_D = 21.1(1.5) kcal/mol and Δ*S*[#]_D = -4(6) eu for the α-deuterium abstraction reaction.

Introduction

Metal complexes containing a metal carbon double bond (carbenes) have been of intense current interest.^{1,2} Two types of carbene complexes are known: electron-rich, low oxidation state transition metal complexes (Fischer-type)^{1c,g-i,3} and electron-deficient, high oxidation state transition metal complexes (Schrock-type, also called alkylidene complexes).^{1d,e,q,3} Since Hérrison and Chauvin proposed the catalytic olefin metathesis mechanism involving M=CHR species,⁴ studies of metal carbene chemistry have led to the development of Mo and W catalysts by the Schrock group⁵ and Ru catalysts by the Grubbs group.⁶ One particular complex that has played a crucial

role in metal carbene chemistry is $(Bu'CH_2)_3Ta=CHBu'(2)$.⁷ It was the first isolated and characterized high oxidation state alkylidene complex,^{7a,b} and this discovery led to the development of a new field in organometallic chemistry.^{1d,e,3,7} Studies of this and other Ta alkylidene complexes have also helped the design and synthesis of the most active alkylidene olefin metathesis catalysts.⁵

 $(Bu'CH_2)_3Ta=CHBu'$ (2) was initially prepared from the reaction of $(Bu'CH_2)_3TaCl_2$ (3) with 2 equiv of $Bu'CH_2Li$,^{7a} and additional studies suggested that the first step in the reaction was the

^{*} To whom correspondence should be addressed.

^{(1) (}a) Schrock, R. R. Chem. Rev. 2002, 102, 145. (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117. (c) Fischer, E. O. NATO ASI Ser., Ser. C 1989, 269, 1. (d) Schrock, R. R. Dalton Trans. 2001, 2541. (e) Schrock, R. R. Chem. Commun. 2005, 2773. (f) Mindiola, D. J. Acc. Chem. Res. 2006, 39, 813. (g) Doetz, K. H.; Minatti, A. In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: New York, 2004; Vol. 1, pp 397-425. (h) Gomez-Gallego, M.; Mancheno, M. J.; Sierra, M. A. Acc. Chem. Res. 2005, 38, 44. (i) Bernasconi, C. F. Adv. Phys. Org. Chem. 2002, 37, 137. (j) Doyle, M. P. Top. Organomet. Chem. 2004, 13, 203. (k) Yong, B. S.; Nolan, S. P. Chemtracts 2003, 16, 205. (1) Kaesz, H. D.; Jensen, C. M. Polyhedron 1988, 7, 1035. (m) Casey, C. P. Reactive Intermediates; Wiley: New York, 1985; Vol. 3, pp 109–150. (n) Pamplin, C. B.; Legzdins, P. *Acc. Chem. Res.* **2003**, *36*, 223. (o) Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8. (p) Caulton, K. G. J. Organomet. Chem. 2001, 617-618, 56. (q) Giesbrecht, G. R.; Gordon, J. C. Dalton Trans. 2004, 2387. (r) Thieuleux, C.; Coperet, C.; Dufaud, V.; Marangelli, C.; Kuntz, E.; Basset, J. M. J. Mol. Catal. A 2004, 213, 47. (s) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592.

^{(2) (}a) Yu, X.-H.; Morton, L. A.; Xue, Z.-L. Organometallics 2004, 23, 2210. (b) Blanton, J. R.; et al. J. Mol. Catal. A 2002, 190, 101. (c) Xue, Z.-L. Comments Inorg. Chem. 1996, 18, 223. (d) Diminnie, J. B.; et al. Pure Appl. Chem. 2001, 73, 331. (e) Morton, L. A.; Chen, S.-J.; Qiu, H.; Xue, Z.-L. J. Am. Chem. Soc. 2007, 129, 7277. (f) Morton, L. A.; Wang, R.-T.; Yu, X.-H.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.-L. Organometallics 2006, 25, 427. (g) Chen, T.-N.; Zhang, X.-H.; Wang, C.-S.; Chen, S.-J.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Wu, Y.-D.; Xue, Z.-L. Organometallics 2005, 24, 1214. (h) Morton, L. A.; Zhang, X.-H.; Wang, R.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L. J. Am. Chem. Soc. 2004, 126, 10208. (i) Diminnie, J. B.; Blanton, J. R.; Cai, H.; Quisenberry, K. T.; Xue, Z.-L. Organometallics 2001, 20, 1504. (j) Choi, S.-H.; Lin, Z.-Y.; Xue, Z.-L. Organometallics 1999, 18, 5488. (k) Liu, X.-Z.; Li, L.-T.; Diminnie, J. B.; Yap, G. P. A.; Rheingold, A. L.; Xue, Z.-L. Organometallics 1998, 17, 4597. (1) Diminnie, J. B.; Xue, Z.-L. J. Am. Chem. Soc. 1997, 119, 12657. (m) Diminnie, J. B.; Hall, H. D.; Xue, Z.-L. Chem. Commun. 1996, 2383. (n) Li, L.-T.; Diminnie, J. B.; Liu, X.-Z.; Pollitte, J. L.; Xue, Z.-L. *Organometallics* **1996**, *15*, 3520. (o) Li, L.-T.; Xue, Z.-L.; Yap, G. P. A.; Rheingold, A. L. *Organometallics* **1995**, *14*, 4992. (p) Xue, Z.-L.; Li, L.-T.; Hoyt, L. K.; Diminnie, J. B.; Pollitte, J. L. J. Am. Chem. Soc. 1994, 116, 2169.

⁽³⁾ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley: New York, 2005.

substitution of a chloride ligand in **3** to yield $(Bu'CH_2)_4TaCl (4)$.^{7a,b} Two paths were postulated for the conversion of **4** to **2** (Scheme 1).^{7b} One route involves the initial formation of pentaneopentyltantalum Ta(CH₂Bu^t)₅ (**1**), followed by α -H abstraction between two alkyl ligands to give $(Bu'CH_2)_3Ta=CHBu^t$ (**2**) (route 1). The other route involves initial α -H abstraction in $(Bu'CH_2)_4TaCl (4)$ to give " $(Bu'CH_2)_2Ta(=CHBu^t)Cl$ " (**5**), followed by substitution of the Cl⁻ ligand in **5** to yield **2**.

Previous study of the mechanistic pathways in the formation of (Bu^tCH₂)₃Ta=CHBu^t (2) led to direct observation of $Ta(CH_2Bu^{t})_5$ (1) in the NMR spectra of the reactions of $(Bu^tCH₂)_{3}TaCl₂$ (3) with 2 equiv of Bu^tCH₂Li and $(Bu^{t}CH_{2})_{4}TaCl$ (4) with 1 equiv of $Bu^{t}CH_{2}Li^{8}Ta(CH_{2}Bu^{t})_{5}$ (1) was, however, short-lived, and its ¹H NMR peaks at 233 K are in a small region (0.8-1.5 ppm) that is crowded with peaks of $(Bu^tCH₂)_{3}TaCl_{2}$ (3), axial and equatorial ligands in (Bu^tCH₂)₄TaCl (4), Bu^tCH₂Li, (Bu^tCH₂)₃Ta=CHBu^t (2), and CMe₄, leading to partial overlap of NMR peaks.⁸ No kinetic study of the α -H abstraction reaction in Ta(CH₂Bu^t)₅ (1) yielding the archetypical alkylidene complex, $(Bu^tCH₂)_{3}Ta=CHBu^t(2)$, was performed. The observation of $Ta(CH_2Bu^t)_5$ (1), and the slow α -H abstraction reaction in (Bu^tCH₂)₄TaCl (4) [to yield "(Bu^tCH₂)₂Ta(=CHBu^t)Cl" (5)]^{8b} in comparison to the relatively quick formation of (Bu^tCH₂)₃Ta=CHBu^t (2) from the reaction of (Bu^tCH₂)₄TaCl (4) with 1 equiv of Bu^tCH₂Li led us to suggest that route 1 in Scheme 1 is the path to give 2.8

Given the critical importance of $(Bu'CH_2)_3Ta=CHBu'$ (2) in the Schrock-type, high oxidation state transition metal carbene chemistry, and its role in the development of olefin metathesis catalysts, we have sought to provide unambiguous evidence of the presence of Ta(CH₂Bu¹)₅ (1) as the precursor to the formation of (Bu'CH₂)₃Ta=CHBu^t (2), and to confirm the assignment of the NMR resonances of 1. In addition, we are interested in the kinetics of the α -H abstraction reaction of Ta(CH₂Bu¹)₅ (1), leading to the formation of the first characterized M=C bond in high oxidation state metal complexes. We have reasoned that,

(4) (a) Hérrison, J. L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
(b) Chauvin, Y. Angew. Chem., Int. Ed. 2006, 45, 3741 (Nobel Lecture).

- (5) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748 (Nobel Lecture).
- (6) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760 (Nobel Lecture).
- (7) (a) Schrock, R. Ř. J. Am. Chem. Soc. 1974, 96, 6796. (b) Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359. (c) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. (d) Schrock, R. R. in Reactions of Coordinated Ligands; Braterman, P. S.; Ed.; Plenum: New York, 1986. (e) Schrock, R. R. J. Organomet. Chem. 1986, 300, 249. (f) Feldman, J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1.
- (8) (a) Li, L.; Hung, M.; Xue, Z. J. Am. Chem. Soc. 1995, 117, 12746.
 (b) Li, L. Ph.D. Dissertation, The University of Tennessee, Knoxville, TN, 1996.

if the α -hydrogen atoms in Ta(CH₂Bu^t)₅ (1) are replaced by deuterium atoms to give $Ta(CD_2Bu^t)_5$ (1- d_{10}), the lifetime of $1-d_{10}$ would be much longer due to a kinetic isotope effect in the α -H/D abstraction, assuming the rate of formation of $2/(Bu^tCD_2)_3Ta = CDBu^t (2-d_7)$ depends in part on the α -H/D abstraction. The longer lifetime of $Ta(CD_2Bu^t)_5$ (1- d_{10}) would provide an opportunity to observe and characterize this important intermediate. In addition, only the methyl resonances in $(Bu^tCD_2)_3TaCl_2$ (**3-***d*₆), $(Bu^tCD_2)_4TaCl$ (**4-***d*₈), Bu^tCD_2Li , $(Bu^{t}CD_{2})_{3}Ta = CDBu^{t} (2-d_{7})$ would be observed in the ¹H NMR spectrum of the reaction between $(Bu^tCD_2)_3TaCl_2$ (3-d₆) and Bu^tCD₂Li. In other words, there would be only half of the number of the peaks in the ¹H NMR spectrum of the mixture containing $Ta(CD_2Bu^{t})_5$ (1- d_{10}) as in the mixture containing $Ta(CH_2Bu^{t})_5$ (1). Use of 1- d_{10} would also allow its observation and characterization by deuterium NMR spectroscopy. The $-CD_2$ – peak of Ta(CD₂Bu^t)₅ (**1-d**₁₀) in the ²H NMR spectrum would help confirm the assignment of the $-CH_2$ - resonances of **1**. In addition to measuring a kinetic isotope effect of the α -H/D abstraction in 1/1- d_{10} , we have also reasoned that Ta(CD₂Bu^t)₅ (1-d₁₀) would provide a unique opportunity to study in detail the kinetics of the formation of the archetypical alkylidene complex, and allow us to measure the activation enthalpy (ΔH^{\dagger}_{D}) and entropy (ΔS^{\dagger}_{D}) of this reaction. We have prepared in situ Ta(CD₂Bu^t)₅ (1- d_{10}) and characterized it by NMR spectroscopy. The kinetics of α -H abstraction in Ta(CH₂Bu^t)₅ (1) at 273 K and α -D abstraction in 1-d₁₀ at 273-298 K have also been studied. These studies are reported here.

Results and Discussion

Preparation of Ta(CD₂Bu^t)₅ (1-*d*₁₀) and Its Conversion to (Bu^tCD₂)₃Ta=CDBu^t (2-*d*₇). Ta(CD₂Bu^t)₅ (1-*d*₁₀) was prepared from either (Bu^tCD₂)₃TaCl₂ (3-*d*₆) and 2 equiv of Bu^tCD₂Li or (Bu^tCD₂)₄TaCl (4-*d*₈) and 1 equiv of Bu^tCD₂Li in toluene-*d*₈ for ¹H NMR spectroscopy or in toluene (with a small amount of toluene-*d*₈) for ²H NMR spectroscopy (Scheme 2). Chloride substitutions in both reactions were found to be faster than the α-deuterium abstraction in Ta(CD₂Bu^t)₅ (1-*d*₁₀). Since 4-*d*₈ is unstable, subsequent studies focused on the reaction of (Bu^tCD₂)₃TaCl₂ (3-*d*₆) with Bu^tCD₂Li.

¹H NMR spectra of the reaction between $(Bu'CD_2)_3TaCl_2$ (**3-d**₆) and 2 equiv of Bu'CD₂Li to give $(Bu'CD_2)_3Ta=CDBu'$ (**2-d**₇) are given in Figure 1. Both $(Bu'CD_2)_4TaCl$ (**4-d**₈) and Ta(CD₂Bu')₅ (**1-d**₁₀) were observed as intermediates. The peaks at 1.30 and 1.09 ppm were assigned to the equatorial and axial methyl groups, respectively, in $(Bu'CD_2)_4TaCl$ (**4-d**₈). The intensities quickly reached a maximum about 30 min after the start of the reaction at 293 K and then started to decrease as the monochloride **4-d**₈ was converted to Ta(CD₂Bu')₅ (**1-d**₁₀). At 283 K, a single peak at 1.25 ppm was assigned to the methyl groups in **1-d**₁₀. This peak is close to that of the methyl groups in Ta(CH₂Bu')₅ (**1**) at 1.27 ppm at 258 K.⁸ After the Bu'CD₂Li

Figure 1. ¹H NMR spectra of the reaction between $(Bu^{t}CD_{2})_{3}TaCl_{2}$ (**3-***d*₆) and 2 equiv of $Bu^{t}CD_{2}Li$ to give $(Bu^{t}CD_{2})_{3}Ta=CDBu^{t}$ (**2-***d*₇) in toluene*d*₈. $(Bu^{t}CD_{2})_{4}TaCl$ (**4-***d*₈) and $Ta(CD_{2}Bu^{t})_{5}$ (**1-***d*₁₀) were observed as intermediates. The solution was maintained at 293 K until Bu^{t}CD_{2}Li disappeared, and then held at 283 K until the reaction was complete.

Figure 2. ²H NMR spectra of the reaction between $(Bu'CD_2)_3TaCl_2 (3-d_6)$ and 2 equiv of $Bu'CD_2Li$ to give $(Bu'CD_2)_3Ta=CDBu' (2-d_7)$ in toluene. The solution was maintained at 293 K until Bu'CD_2Li disappeared, and then held at 283 K until the reaction was complete.

peak at 1.12 ppm disappeared and the conversion of $(Bu'CD_2)_3TaCl_2$ (**3-***d*₆) and $(Bu'CD_2)_4TaCl$ (**4-***d*₈) to **1-***d*₁₀ was complete, the NMR probe was set to a desired temperature to observe the conversion of **1-***d*₁₀ to $(Bu'CD_2)_3Ta=CDBu'$ (**2-***d*₇). Kinetic studies of the formation of **2-***d*₇ are discussed below.

The reaction of $(Bu'CD_2)_3TaCl_2$ (3-d₆) with 2 equiv of Bu'CD_2Li to give $(Bu'CD_2)_3Ta=CDBu^t$ (2-d₇) was also monitored by ²H NMR spectroscopy. The reactants 3-d₆ and Bu'CD_2Li, intermediates $(Bu'CD_2)_4TaCl$ (4-d₈) and Ta(CD_2Bu^t)_5 (1-d₁₀), and product 2-d₇ are expected to give resonances for their α -D atoms. ²H NMR spectra of the reaction are given in Figure 2. At 283 K, the $-CD_2-$ groups of Ta(CD_2Bu^t)_5 (1-d_{10}) were observed at 1.39 ppm. This peak is close to the peak at 1.42 ppm in the ¹H NMR spectra. The $-CD_2-$ groups in Ta(CH₂Bu^t)₅ (1),⁸ supporting the assignment of this resonance in ¹H NMR spectra. The $-CD_2-$ peak of 1-d₁₀ reaches its maximum at approximately the same time as the methyl groups (1.25 ppm) in Ta(CD₂Bu^t)₅ (1-d₁₀) in the ¹H NMR spectra.

Figure 3. ¹H NMR spectra of the conversion of $Ta(CH_2Bu^{1})_{5}$ (1) \rightarrow (Bu¹CH₂)₃Ta=CHBu^t (2) in toluene- d_{8} at 273 K. The solution was initially maintained at 233 K until Bu¹CH₂Li disappeared. The reaction Ta(CH₂Bu¹)₅ (1) \rightarrow (Bu¹CH₂)₃Ta=CHBu^t (2) was then conducted at 273 K. The reaction was quenched by cooling the NMR tube to 233 K at the end of each time period, and the spectra were taken at 233 K.⁹

of the $-CD_2$ - and $-CMe_3$ resonances in the NMR spectra to the same complex, **1**- d_{10} .

In the ¹³C NMR spectra at 268 K, the $-CD_2$ - peak of Ta(CD₂Bu¹)₅ (**1-d**₁₀) was observed as a quintet at 114.8 ppm with a coupling constant J_{C-D} of 15.9 Hz. In comparison, the $-CH_2$ - peak of Ta(CH₂Bu¹)₅ (**1**) was observed at 115.9 ppm with J_{C-H} of 105.6 Hz at 258 K.⁸

Kinetic Studies of the Conversion of Ta(CH2But)5 (1) to $(Bu^tCH₂)_{3}Ta = CHBu^t$ (2) and $Ta(CD_2Bu^t)_{5}$ (1- d_{10}) to $(Bu^tCD_2)_{3}$ -Ta=CDBu^t (2- d_7). The reaction of Bu^tCH₂Li with (Bu^tCH₂)₄-TaCl (4), prepared in situ from (Bu^tCH₂)₃Ta=CHBu^t (2) and HCl,^{7b} yielded Ta(CH₂Bu^t)₅ (1).⁸ Two methods were used to collect kinetic data for the α -H abstraction reaction of the shortlived $Ta(CH_2Bu^t)_5$ (1) at 273 K. In one method, the solution was maintained at 233 K until Bu^tCH₂Li disappeared.⁸ Then the reaction $Ta(CH_2Bu^t)_5(1) \rightarrow (Bu^tCH_2)_3Ta=CHBu^t(2)$ was conducted at 273 K, and at the end of each time period the reaction was quenched by cooling the NMR tube containing the solution to 233 K. ¹H spectra were then taken at 233 K (Figure 3).⁹ In another method, the reaction of Bu^tCH₂Li with (Bu^tCH₂)₄TaCl (4) was conducted in an NMR tube at 273 K, and kinetic data were collected after (Bu^tCH₂)₄TaCl (4) disappeared. These two methods were found to give similar kinetic plots.

The α -H abstraction reaction of Ta(CH₂Bu¹)₅ (1) to yield the alkylidene complex (Bu^tCH₂)₃Ta=CHBu¹ (2) was found to follow first-order kinetics. A plot of ln(*C*/*C*₀) vs *t* at 273 K is given in Figure 4. The rate constant for the α -H abstraction reaction at 273 K from the aforementioned two methods is $k_{\rm H} = 1.76(0.06) \times 10^{-4} \, {\rm s}^{-1}$ [half-life $t_{1/2} = 66(2)$ min]. We reported earlier the observation of Ta(CH₂SiMe₃)₅ (6) and its conversion through α -H abstraction to alkylidene complex (Me₃Si-CH₂)₃Ta=CHSiMe₃ (7) and then to bridging alkylidyne complex (Me₃SiCH₂)₂Ta(μ -CSiMe₃)₂Ta(CH₂SiMe₃)₂ (8) (Scheme 3).⁸ Ta(CH₂SiMe₃)₅ (6) and (Me₃SiCH₂)₃Ta=CHSiMe₃ (7) containing β -Si atoms are analogs of Ta(CH₂CMe₃)₅ (1) and

⁽⁹⁾ Some of the spectra in the studies reported in ref 8 were used to obtain kinetic data in the current work.

Figure 4. Kinetic plot of the conversion of $Ta(CH_2Bu^t)_5$ (1) to $(Bu^tCH_2)_3Ta=CHBu^t$ (2) at 273 K.

Scheme 3

 $(Me_3CCH_2)_3Ta=CHCMe_3$ (2). Kinetic studies of the $6 \rightarrow 7$ conversion showed that it is much slower than the $1 \rightarrow 2$ conversion. The $6 \rightarrow 7$ conversion was investigated between 301.0 and 326.5 K yielding $\Delta H^{\ddagger}_{H} = 21.6(1.4)$ kcal/mol and $\Delta S_{\rm H}^{\dagger} = -5(5)$ eu.⁸ The rate constants for the conversion of **6** \rightarrow 7 range from 1.028(0.008) × 10⁻⁴ s⁻¹ [$t_{1/2}$ = 112(1) min] at 301.0 K to $1.83(0.02) \times 10^{-3} \text{ s}^{-1} [t_{1/2} = 6.3(0.1) \text{ min}]$ at 326.5 K. Extrapolation of the rate constants at 301.0-326.5 K to 273 K using the Eyring equation yields a rate constant of 2.65 \times 10^{-6} s^{-1} ($t_{1/2} = 4.36 \times 10^3 \text{ min or } 72.7 \text{ h}$) for the $6 \rightarrow 7$ conversion. Given the rate constant of $1.76(0.06) \times 10^{-4} \text{ s}^{-1}$ for the Ta(CH₂Bu^t)₅ (1) \rightarrow (Bu^tCH₂)₃Ta=CHBu^t (2) conversion, the α -H abstraction reaction of the neopentyl complex $Ta(CH_2CMe_3)_5$ (1) is about 66.4 times faster than that of its β -Si analogue Ta(CH₂SiMe₃)₅ (6) at 273 K. This difference is perhaps not surprising given that $Ta(CH_2CMe_3)_5$ (1) is expected to be much more crowded than $Ta(CH_2SiMe_3)_5$ (6). A typical C-C bond length is 1.54 Å versus a typical C-Si bond length of 1.89 Å.

Decomposition of Ta(CH₂Ph)₅ (**9**), another pentaalkyl complex free of β -H atoms, has also been studied.¹⁰ This decomposition leads to unknown species, and no NMR signal attributed to "(PhCH₂)₃Ta=CHPh" was observed in the decomposition process. Kinetic studies of the decomposition of Ta(CH₂Ph)₅ (**9**) at 313 K gave a rate constant of (3.8–4.3) × 10⁻⁵ s⁻¹ ($t_{1/2} = 269-304$ min).¹⁰ This decomposition of Ta(CH₂Ph)₅ (**9**) is about 10 times slower than that of Ta(CH₂SiMe₃)₅ (**6**) at 313 K. Kinetic studies of the decomposition involving Ta(CH₂CMe₃)₅ (**1**) were conducted at temperatures much lower than those involving Ta(CH₂SiMe₃)₅ (**6**) and Ta(CH₂Ph)₅ (**9**). Yet it is reasonable to show that

Figure 5. Kinetic plots of the conversion of $1-d_{10} \rightarrow 2-d_7$.

Table 1.	Measured	Rate (Constants	k for	the	1- <i>d</i> ₁₀ →	2-d7
Convers	ion ^a						

Т (К)	$k \; (\delta k_{ m ran}) \; imes \; 10^5 \; ({ m s}^{-1})$
273(1)	1.25 (0.03)
278(1)	2.17 (0.12)
283(1)	4.28 (0.08)
288(1)	8.4 (0.3)
293(1)	16.9 (1.4)
298(1)	34.8 (1.5)

^{*a*} The total uncertainty $\delta k/k$ of 0.095 was calculated from $\delta k_{ran}/k = 0.081$ and $\delta k_{sys}/k = 5\%$.¹⁷

decomposition rates of the three complexes are $Ta(CH_2CMe_3)_5$ (1) > $Ta(CH_2SiMe_3)_5$ (6) > $Ta(CH_2Ph)_5$ (9).

The current work to observe $Ta(CD_2Bu^t)_5$ (1- d_{10}) and its conversion to $(Bu^tCD_2)_3Ta=CDBu^t$ (2- d_7) by ¹H and ²H spectroscopy provides clear evidence that pentaneopentyltantalum (1) is an intermediate to the alkylidene complex 2. The use of the D-labeled complex also offers the opportunity to further probe kinetics of the formation of the alkylidene complex (Bu^tCD₂)₃Ta=CDBu^t (2- d_7) including kinetic isotope effect (KIE).

Kinetic studies of the conversion of $Ta(CD_2Bu^{t})_5$ (1- d_{10}) to $(Bu^{t}CD_{2})_{3}Ta = CDBu^{t} (2-d_{7})$ were conducted after $(Bu^{t}CD_{2})_{4}$ -TaCl (4- d_8) and (Bu^tCD₂)₃TaCl₂ (3- d_6) had disappeared in ¹H NMR spectra. At this time, no more $1-d_{10}$ was expected to form, and the time was counted as t = 0 min. The α -D abstraction reaction of $Ta(CD_2Bu^t)_5$ (1- d_{10}) to $(Bu^tCD_2)_3Ta=CDBu^t$ (2- d_7) was found to follow first-order kinetics. Plots of $\ln(C/C_0)$ vs t at six different temperatures between 273 and 298 K are shown in Figure 5. The rate constants at these temperatures are listed in Table 1. An Eyring plot of $\ln(k_D/T)$ vs 1000/T is shown in Figure 6. The activation parameters derived for the conversion of **1-** d_{10} to **2-** d_7 are $\Delta H^{\dagger}_{D} = 21.1(1.5)$ kcal/mol, $\Delta S^{\dagger}_{D} = -4(6)$ eu, and $\Delta G^{\dagger}_{D,273K} = 22(3)$ kcal/mol. Near-zero or negative values for ΔS^{\dagger} have been observed in C-H bond activation reactions where concerted four-center transition states, especially those involving cyclometalation, are proposed.¹¹ $\Delta G^{\dagger}_{H,273K}$ for the α -hydrogen abstraction reaction of Ta(CH₂Bu^t)₅ (1) may

⁽¹⁰⁾ Malatesta, V.; Ingold, K. U.; Schrock, R. R. J. Organomet. Chem. 1978, 152, C53.

^{(11) (}a) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210. (b) Smith, G. M.; Carpenter, J. D.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 6805. (c) McDade, C.; Green, J. C.; Bercaw, J. E. Organometallics 1982, 1, 1629. (d) Bulls, A. R.; Schaefer, W. P.; Serfas, M.; Bercaw, J. E. Organometallics 1987, 6, 1219. (e) Rothwell, I. P. Acc. Chem. Res. 1988, 21, 153. (f) Buchwald, S. L.; Nielson, R. B. J. Am. Chem. Soc. 1988, 110, 3171. (g) Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z.-L. J. Am. Chem. Soc. 1991, 113, 6082.

Figure 6. Eyring plot of the conversion of $1 - d_{10} \rightarrow 2 - d_7$.

be estimated from the KIE = 14.1(0.8) at 273 K and the Eyring equation: $RT \ln(k_{\rm H}/k_{\rm D}) = \Delta G^{\dagger}_{\rm D} - \Delta G^{\dagger}_{\rm H}$, yielding $\Delta G^{\dagger}_{\rm H,273K} =$ 21(3) kcal/mol. In the calculation here, the C–H/C–D stretching frequency is assumed to disappear in the transition state to break the bond.¹² The activation free energy for the α -hydrogen abstraction reaction of Ta(CH₂SiMe₃)₅ (**6**), in comparison, is estimated to be $\Delta G^{\dagger}_{\rm H,273K} = 23(3)$ kcal/mol.⁸

The KIE in the current work is larger than usual. Such large KIEs have been observed in hydrogen abstraction reactions¹³ and electrophilic protonolysis of transition metal complexes.¹⁴ Larger KIE values have also been attributed to the tunneling effect for lighter H atoms, leading to the faster C–H bond breaking reaction.^{13a,14,15} The tunneling effect is reportedly more prominent for sterically crowded molecules.^{15d} Given the instability of Ta(CH₂Bu¹)₅ (1) and Ta(CD₂Bu¹)₅ (1-d₁₀) and limited experimental data in the current work, it is not feasible at present to obtain KIE values over a larger temperature range for the 1 \rightarrow 2 conversion to study the tunneling effect.¹⁶

Experimental Section

All manipulations were preformed under a dry nitrogen or argon atmosphere with the use of either a drybox or standard Schlenk techniques. Ether, toluene, and toluene- d_8 were dried over potassium/benzophenone, distilled, and stored under N₂. Benzene- d_6 was dried over activated molecular sieves, stored under N₂, and used in the identification of several complexes after their synthesis. NMR spectra were recorded on a Bruker AMX-400 Fourier transform spectrometer and were referenced to solvents. In the case of ²H NMR spectra, a small amount of toluene- d_8 was added to toluene

(12) Jones, W. D. Acc. Chem. Res. 2003, 36, 140.

- (13) (a) Schock, L. E.; Brock, C. P.; Marks, T. J. Organometallics 1987, 6, 232. (b) Slaughter, L. M.; Wolczanski, P. T.; Klinckman, T. R.; Cundari, T. R. J. Am. Chem. Soc. 2000, 122, 7953. (c) Ryabov, A. D. Chem. Rev. 1990, 90, 403.
- (14) Bercaw, J. E.; Chen, G. S.; Labinger, J. A.; Lin, B.-L. J. Am. Chem. Soc. 2008, 130, 17654.
- (15) (a) Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules: Wiley: New York, 1980; pp 140-152. (b) Bell, R. P. The Proton in Chemistry, 2nd ed.; Cornell University Press: Ithaca, NY, 1973; pp 270-289. (c) Isotope Effects in Chemistry and Biology; Kohen, A., Limbach, H.-H., Eds.; CRC Press: Boca Raton, FL, 2006. (d) Lewis, E. S.; Funderburk, L. J. Am. Chem. Soc. 1967, 89, 2322.
- (16) (a) Doering, W. v. E.; Keliher, E. J.; Zhao, X. J. Am. Chem. Soc. 2004, 126, 14206. (b) Doering, W. v. E.; Zhao, X. J. Am. Chem. Soc. 2006, 128, 9080. (c) Doering, W. v. E.; Keliher, E. J. J. Am. Chem. Soc. 2007, 129, 2488.
- (17) The systematic uncertainties δk_{sys} were estimated based on the subjective judgment of the sensitivities of the NMR integration to the changes in concentrations. The total uncertainties δk were calculated from δk = (δk_{ran}² + δk_{sys}²)¹² (δk_{ran} = random uncertainty). See: Taylor. J. R. An Introduction to Error Analysis; University Science Books: Mill Valley, CA, 1982; Chapter 4.

for reference. BuⁱCD₂Br,^{7b,11g,18} (BuⁱCD₂)₃TaCl₂ (**3-***d*₆),^{7b} and BuⁱCD₂Li^{7b} were prepared by the literature procedures. ZnCl₂ was dried by refluxing with SOCl₂.^{7b} Ta(CH₂Buⁱ)₄Cl (**4**) was prepared in situ from **2** and HCl.^{7b} DCl and HCl in ether (1.0 M) were purchased from Aldrich. They were each diluted to 0.10 M with ether before use.

The rate constants were the average of at least two separate experiments at each temperature. The *maximum* random uncertainty in the rate constants for each reaction was combined with the estimated systematic uncertainties, ca. 5%.¹⁷ The total uncertainties in the rate constants were used in the Eyring plots and in the following error propagation calculations. The estimated uncertainty in the temperature measurements for an NMR probe (used in the *k* determinations) was 1 K. The activation enthalpies (ΔH^{+}_{D}) and entropies (ΔS^{+}_{D}) were calculated from an unweighted nonlinear least-squares procedure contained in the SigmaPlot Scientific Graph System. The uncertainties in ΔH^{+}_{D} and ΔS^{+}_{D} were computed from the error propagation formulas derived from the Eyring equation by Girolami and co-workers.¹⁹

Preparation of Zn(**CD**₂**Bu**')₂. Zn(CD₂Bu')₂ was prepared earlier from Bu'CD₂Li and ZnCl₂•dioxane.^{7b} In the current work, it was directly prepared from Bu'CD₂MgBr and ZnCl₂. The Grignard reagent Bu'CD₂MgBr was prepared by adding Bu'CD₂Br (20.37 g, 133.1 mmol) dropwise to Mg turnings (3.251 g, 133.8 mmol) in ether (50 mL). Several drops of BrCH₂CH₂Br were used to initiate the reaction, and the solution was refluxed for 20 h at 45 °C. Filtration gave a solution of Bu'CD₂MgBr in ether (75 mL, 0.95 M, 71 mmol, 53% yield). The concentration of the Grignard solution was determined by adding 1.0 mL of the solution into distilled water to form Mg(OH)Br and CMe₃CD₂H. Titration of the aqueous Mg-(OH)Br solution using 0.096 M HCl gave the concentration of the Bu'CD₂MgBr solution.

The solution of Bu^tCD₂MgBr was added slowly to ZnCl₂ (4.62 g) in ether (40 mL) at -20 °C, and stirred for 2 days at room temperature. Filtration, removal of ether, and distillation of the product yielded Zn(CD₂Bu^t)₂ (5.019 g, 23.74 mmol, 70% yield), which was then used to make (Bu^tCD₂)₃TaCl₂ (**3-***d*₆) according to the literature procedures.^{7b}

In Situ Preparation of Ta(CD₂Bu¹)₅ (1- d_{10}) and Its Conversion to (Bu⁴CD₂)₃Ta=CDBu^t (2- d_7). 1. Preparation of Ta(CD₂-Bu¹)₅ (1- d_{10}) from the Reaction between (Bu⁴CD₂)₃TaCl₂ (3- d_6) and Bu⁴CD₂Li. (Bu⁴CD₂)₃TaCl₂ (3- d_6) (40.0 mg, 0.0849 mmol) and Bu⁴CD₂Li (17 mg, 0.21 mmol)²⁰ were each dissolved in toluene- d_8 at -78 °C. They were mixed in an NMR tube (total volume = 4.0 mL) at -78 °C, giving a dark yellow solution. The sample was kept at -78 °C until ready for use. ¹H NMR spectra of the solution were taken at 10 °C.

The reaction between (Bu'CD₂)₃TaCl₂ (**3**-*d*₆) and Bu'CD₂Li was conducted similarly in toluene containing a small amount of toluene*d*₈. ²H NMR spectra of the solution were collected using toluene*d*₈ as internal standard. **1**-*d*₁₀: ¹H NMR (toluene-*d*₈, 399.7 MHz, 10 °C) δ 1.25 (s, 45H, *Me*₃CCD₂); ²H NMR (toluene, 61.4 MHz, 10 °C) δ 1.39 (s, 10D, Me₃CCD₂); ¹³C{¹H} NMR (toluene-*d*₈, 100.5 MHz, -5 °C) δ 114.8 (quintet, Me₃CCD₂), *J*_{C-D} = 15.9 Hz), 36.3 (Me₃CCD₂), 35.2 (*Me*₃CCD₂). **2**-*d*₇: ¹H NMR (toluene-*d*₈, 399.7 MHz, 10 °C) δ 1.44 (s, 9H, *Me*₃CCD=), 1.14 (s, 27H, *Me*₃CCD₂); ²H NMR (toluene, 61.4 MHz, 10 °C) δ 1.90 (s, 1D, Me₃CCD=), 0.88 (s, 6D, Me₃CCD₂); ¹³C{¹H} NMR (toluene-*d*₈, 100.5 MHz, -5 °C) δ 248.7 (t, Me₃CCD=, *J*_{C-D} = 14.1 Hz), 112.3 (quintet,

- (19) Morse, P. M.; Spencer, M. D.; Wilson, S. R.; Girolami, G. S. Organometallics 1994, 13, 1646.
- (20) Some excess of Bu'CD₂Li was used to ensure complete conversion of (Bu'CD₂)₃TaCl₂ (**3-d**₆) to Ta(CD₂Bu')₅ (**1-d**₁₀). When exactly 2 equiv of Bu'CD₂Li was used in the reaction, the same intermediates, including **1-d**₁₀, and products were observed. A slight excess of **3-d**₆, however, was left after the reaction, probably as a result of a trace amount of moisture and error of the analytical balance.

⁽¹⁸⁾ Wiley, G. A.; Rein, B. M.; Hershkowitz, R. L. *Tetrahedron Lett.* **1964**, *5*, 2509.

 Me_3CCD_2 , $J_{C-D} = 16.2$ Hz), 47.0 ($Me_3CCD=$), 34.9 (Me_3CCD_2), 34.8 (Me_3CCD_2), 34.6 ($Me_3CCD=$).

2. Preparation of Ta(CD₂Bu¹)₅ (1-*d*₁₀) from the Reaction between (Bu¹CD₂)₄TaCl (4-*d*₈) and Bu¹CD₂Li. (Bu¹CD₂)₄TaCl (4-*d*₈) was prepared from (Bu¹CD₂)₃Ta=CDBu¹ (2-*d*₇) and DCl (0.10 M, ether). (Bu¹CD₂)₃Ta=CDBu¹ (2-*d*₇, 30 mg, 0.064 mmol) was added to a flask in ether (10 mL). DCl (0.64 mL, 0.10 M, ether) was added slowly at -78 °C. The mixture was stirred for 30 min, and then solvent was removed. The solid was redissolved in toluene*d*₈ and kept at -78 °C. An NMR tube was prepared with Bu¹CD₂Li (5.6 mg, 0.070 mmol) in toluene-*d*₈ and cooled to -78 °C.²⁰ The unstable (Bu¹CD₂)₄TaCl (4-*d*₈) was quickly added to the NMR tube, and the sample was kept at -78 °C until ready for use. ¹H NMR spectra of the solution were taken at 0 °C.

Kinetic Studies of the Conversion of $Ta(CD_2Bu^{t})_5$ (1- d_{10}) to $(Bu^{t}CD_2)_3Ta=CDBu^{t}$ (2- d_7). $(Bu^{t}CD_2)_3TaCl_2$ (3- d_6 , 40.0 mg, 0.085 mmol) and Bu^{t}CD_2Li (17 mg, 0.21 mmol)^{20} were dissolved in toluene- d_8 in separate NMR tubes. Bibenzyl (20–25 mg, an internal standard) was added to the solution of 3- d_6 . The samples were kept at -78 °C. The solution of 3- d_6 /bibenzyl was added to that of Bu^{t}CD_2Li and kept at -78 °C until use. Initial NMR spectra were taken at 293 K until the peaks of (Bu^{t}CD_2)_3TaCl_2 (3- d_6) and Bu^{t}CD_2Li had disappeared. Then, ¹H NMR spectra were taken at the end of each time period at 273(1), 278(1), 283(1), 288(1), 293(1), and 298(1) K for kinetic measurements until the conversion of 1- d_{10} to (Bu^{t}CD_2)_3Ta=CDBu^t (2- d_7) was complete. Kinetic Studies of the Conversion of $Ta(CH_2Bu^{1})_{5}$ (1) to $(Bu^{t}CH_2)_{3}Ta=CHBu^{t}$ (2). In the first method, $(Bu^{t}CH_2)_{4}TaCl$ (4)^{7b} in toluene- d_8 at -78 °C was mixed with Bu^{t}CH_2Li in toluene- d_8 at -78 °C. The solution was kept in the precooled NMR spectrometer at -40 °C until Bu^{t}CH_2Li disappeared.⁸ The reaction was then conducted at 0.0 °C in a circulation bath and quenched at -40 °C at the end of each time period to take ¹H spectra. After 4 disappeared, subsequent ¹H spectra and the peaks of Ta(CH_2Bu^{t})_{5} (1) were used in the kinetic studies.⁹

In the second method, **4**, prepared in situ from **2** (60.0 mg, 0.129 mmol) and HCl (1.40 mL, 0.10 M, ether) at $-78 \,^{\circ}\text{C}$, ^{7b} was redissolved in toluene- d_8 at $-78 \,^{\circ}\text{C}$ and then added to a solution of Bu'CH₂Li (12 mg, 0.15 mmol) and bibenzyl (20 mg, internal standard) in toluene- d_8 at $-78 \,^{\circ}\text{C}$. The NMR tube containing the mixture was then placed into an NMR spectrometer precooled to 0 $^{\circ}\text{C}$. The reaction was conducted at 0 $^{\circ}\text{C}$ and ¹H spectra were taken directly at this temperature and were used for kinetic studies.

Acknowledgment. Acknowledgment is made to the National Science Foundation (CHE-051692) for financial support and to Dr. Shu-Jian Chen for his assistance.

Supporting Information Available: Complete refs 2b and 2d and ¹³C NMR spectra of $1-d_{10}$ and $2-d_7$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA901251C